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Spatially ‘‘chaotic’’ solutions in reaction-convection models and their bifurcations to moving waves
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~Received 14 June 2001; revised manuscript received 26 March 2002; published 12 July 2002!

The emergence of stationary spatially multiperiodic or even spatially chaotic patterns is analyzed for a
simple model of convection, reaction, and conduction in a cross-flow reactor. Spatial patterns emerge much
like dynamic temporal patterns in a mixed system of the same kinetics. Moving waves are formed in an
unbounded system but they are transformed into stationary spatially inhomogeneous patterns in a bounded
system. The sequence of period doubling bifurcations is determined numerically. The incorporation of a slow
nondiffusing inhibitor leads to chaotic spatiotemporal patterns.
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I. INTRODUCTION

The increasing interest in reaction-convection-diffusi
systems was recently recognized by assigning it a new PA
number~82.40.Ck! that distinguishes it from that of the we
studied reaction-diffusion systems. Reaction-convecti
diffusion systems are typically described by a system of
form:

Lx t1Vxz2Dxzz5f~x!, ~1!

where x is the vector of state variables,L5diag$Li%, V
5diag$Vi%, D5diag$Di%, andLi , Vi , andDi are the capaci-
ties, velocities, and diffusivities of the various state va
ables. Reactants can be fed to the reactor either through
port or may be distributed along the reactor via many po
~to which we refer as cross flow!. Cross-flow conditions can
also be achieved by feeding through a membrane or thro
a preceding reaction. In the cross-flow reactor we can fin
homogeneous solution@ f(xs)50#. The technological advan
tages of such a reactor were argued in Ref.@1#.

Stationary pattern formation mechanism in diffusiv
reactive systems was suggested in the pioneering wor
Turing @2#. The diffusive Turing instability applies to a two
variable system when the inhibitor diffuses sufficiently fas
than the activator. This mechanism was able to account
certain patterns in chemistry and biology@3,4#, but largely
was unable to induce patterns in liquid-phase oscillatory
action where the reactant diffusivities are usually of simi
magnitudes, or in catalytic systems, in which the diffusiv
of the activator is typically larger than the diffusivity of th
inhibitor.

In the presence of convection a stationary pattern form
tion mechanism has been recently suggested by Kuzne
et al. @5#. The behavior of spatially distributed system cr
cially depends on whether the instability is convective
absolute. An instability is calledconvectiveif a small pertur-
bation induces a local growth from the spatially uniform s
lution, but disturbances propagate as a wave packet and
advected out of the system. An instability is termedabsolute
if a localized initial perturbation gives rise to growing am
plitudes at all points in space. The distinction between ab
lute and convective instabilities in unbounded systems
pends on the choice of the coordinate system and w
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appropriate transformations to the moving coordinate we
convert one instability to another. The problem becom
definite if we consider a bounded~or semibounded! system
with a boundary condition that is fixed at one end. Pertur
tions applied at the boundary can either penetrate the sys
which then acts as a nonlinear filter and a spatial amplifier
be damped. The pattern-formation mechanism suggeste
Ref. @5# is based on the amplification of the stationary p
turbations in the convectively unstable systems. Such pe
bations can be introduced by the stationary boundary co
tions that differ from the steady state solution. Th
mechanism accounts for stationary patterns in several re
studies: ‘‘flow distributed oscillations’’~FDO! were exten-
sively investigated in Ref.@6# for the Brusselator model, in
Ref. @7# for a Gray-Scott kinetics, in Ref.@8# for the CDIMA
reaction, and in Ref.@9# for the Oregonator models and i
our previous studies of cross-flow reactors@10–12# with a
single Arrhenius first order reaction.

The mechanisms above can also be classified accordin
the activator/inhibitor parameter ratios,V1 /V2 , D1 /D2, and
L1 /L2, which define the emergence of stationary patterns
the FDO stationary patterns emerge even whenD15D2 @6,8#
and it is claimed therefore that these patterns are not du
the Turing mechanism. Diffusion is important for the statio
arity of these patterns and the stationary solution bre
down with D250. In recent works@10,11# we showed that
stationary spatially periodic patterns emerge in a boun
system even whenD250 provided that the activator capac
ity L1 is sufficiently large~for catalytic nonisothermal sys
temsx1 is typically the temperature and the heat capacity
large,L1@1).

Other studies have focused on spatiotemporal pattern
Eq. ~1!. Most notably the well studied differential flow in
duced chemical instability mechanism@13,14# is connected
with the separation of variables due to different convect
rates (V1,V2).

The studies above were devoted to formation of station
and moving spatially period-one patterns. In this work w
present a general approach for designing stationary patt
of desired complexity. The steady state solutions of the s
tem ~1! are governed by a system of ordinary different
equations~ODEs! written in the dimensionless form asxz

2Pxzz5F(x), whereP5diag$Pei
21 ,Pei5LVi /Di%, andL is

the reactor length. In the limit case Pei→` the spatially
©2002 The American Physical Society04-1
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periodic solutions@xz5F(x)# can be predicted from known
similar solutions of the temporal behavior of a mixed syst
governed by the same kinetics@xt5F(x)#. We can construct
spatially chaotic steady patterns using kinetics known to
hibit temporal chaos. Let the dynamic system exhibit a
quence of period-doubling bifurcations with a varying p
rameter at p5p1 ,p2 , . . . ,pn . Then for the spatially
distributed system withp5pn and other fixed parameters w
can expect to find spatially 2n-periodic solution in the limit
case Pei→`. For finite Pei we expect to find a sequence
bifurcations with increasing Pe from Pe0 to `, where Pe0 is
the bifurcation point to a period-one solution that can
determined by linear analysis~see Ref.@10#!. The solution is
stable for a sufficiently largeL1. The behavior at finitePe
and the stability of the stationary solutions cannot be p
dicted by a simple transformation of temporal and spa
coordinates since the system is bounded.

In the present work we demonstrate the mechanism
multiperiodic pattern formation for a model of a catalyt
cross-flow reactor with two consecutive reactions gover
by three state variables using parameters that are know
yield chaotic temporal behavior in the systemxt5f(x) @15#.

While oscillatory temporal kinetics is not necessary
obtaining stationary patterns, we also consider the fou
order system formed by the system above coupled wit
slow nondiffusive inhibitorL4x4,t5 f 4(x) in a domain where
Lx t5f(x) undergoes the Hopf bifurcation.

II. MATHEMATICAL MODEL

As stated we consider the pseudohomogeneous
dimensional model of a catalytic cross-flow reactor with tw
consecutive reactionsA→B→C. The appropriate math
ematical model may be written in the following dimensio
less form:

Le
]y

]t
1

]y

]j
2

1

Pe

]2y

]j2
5B1r 11B2r 22ST5h~x1 ,x2 ,y,f!,

]x1

]t
1

]x1

]j
52r 12SC1

5 f ~x1 ,y,f!, ~2!

]x2

]t
1

]x2

]j
5r 12r 22SC2

5g~x1 ,x2 ,y,f!,

j50, xi5xi ,in , y5yin ; j5L̃,
]y

]j
50. ~3!

Herexi ( i 51,2) andy are dimensionless concentrations a
temperature,r i(xi ,y,f)5Daifxiexp(y) are the chemical re
action rates for very large activation energies and first-or
kinetics (Dai are the Damkohler numbers andf is the re-
versible catalytic activity!, Le is the Lewis number—the ra
tio of solid- to fluid-phase heat capacities, andSCi

5aC(xi

2xi ,w) and ST5aT(y2yw) are mass supply through th
wall and heat loss due to cooling. Other notations are c
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ventional. Note, that we used an arbitrary valuez0 as the
length scale so that the reactor lengthL̃5L/z0 can be varied
as a free parameter.

While there is no general agreement on the source
form of activation-deactivation steps, we adopt here a sim
linear expression~see Ref.@16#!,

Kf

]f

]t
5af2bff2y5q~y,f!, ~4!

and typically setKf@1.

III. ANALYSIS AND SIMULATIONS

We divide the analysis into a constant activity casef
51) and a varying activity case. For each case we ana
the system behavior by linear analysis and verify the res
with simulations.

A. Constant activity case

Let us review the behavior of several simplified and
lated systems:

~a! If we ignore the heat-dispersion term then the stea
state system

dx1

dj
5 f ~x1 ,x2 ,y,1!5 f 1 ,

dx2

dj
5g1 ,

dy

dj
5h1 ~5!

is exactly the model describing the temporal dynamics o
mixed reactor~with j replaced byt). Temporally chaotic
solutions are known to exist for this model.

~b! With incorporation of the dispersion term the syste
may be written as

dx1

dj
5 f 1 ,

dx2

dj
5g1 ,

dy

dj
5p,

dp

dj
5Pe~p2h1!.

~6!

The asymptotic solutions of this system are identical to th
of Eq. ~5! but the new term affects the stability. The Jacobi
matrix of the linearized system~6! is

J5S f 1x1
0 f 1y

0

g1x1
g1x2

g1y
0

0 0 0 1

2Peh1x1
2Peh1x2

2Peh1y
Pe

D , ~7!

and the characteristic equation of the eigenvalues (mj ) is the
fourth-order polynomial:

det~J2mI !5(
i 50

4

aim
i50, ~8!

with ai5ai ,01ai ,1Pe. The bifurcation to a periodic solutio
(m5 ik0) occurs at Pe5Pe0 that satisfies

aPe0
21bPe01c50, ~9!
4-2
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with k0
25a1 /a3. The derivation of Eq.~9! will be presented

elsewhere.
~c! We can conduct a linear stability analysis of u

bounded system~2! in an infinitely long region. Denoting the
deviation from the basic steady state solutionu0
5$x1s ,x2s ,ys% as u15$x1 ,x2 ,y1%, and assuming u1
;eikj1st, we can derive the dispersion relationD(s,k)50.
The bifurcation condition Re(s)50 defines the neutra
curve, which may be calculated numerically. We used Pe
the bifurcation parameter as it does not influence the ste
state solutions and as we intend to employ the results
tained in the limit Pe→`. The neutral curve typically ac
quires a minimum corresponding to the convective instabi
threshold (Pec , kc! and crossing Pec corresponds to an exci
tation of waves traveling with a finitek and a constant speed
In a bounded system above Pe5Pe0 the waves are trans
formed intostationary patterns~see Refs.@5–10#!. For such
patterns to emerge, we impose a condition of zero freque
v50 in addition to the relation Re(s)50. If both of these
conditions are matched, we may determine a threshold v
for amplification of the stationary perturbation. Its coord
nates correspond to the Hopf bifurcation point for Eq.~6!,
defined by Eq.~9!, but k0 is now the spatial wave number.

We chose for our study the set of parameters used in
@17# for exothermic-endothermic consecutive reactions i
mixed reactor since its domain of multiperiodic and chao
solutions is relatively wide, and the corresponding critic
parameters (Pe0 and the periodT052p/k0) allow us to sug-
gest observations of these motions in a distributed sys
with physically reasonableL and Pe values. According to th
bifurcation analysis conducted in Ref.@17#, increasingaT
yields a Hopf bifurcation ataT58.9408 followed by a se-
quence of period-doubling bifurcations that converge to c
otic solutions that exist for 8.965,aT,9.041. ~To be con-
sistent with that study, we setaT5d11, x1,w51, x2,w50,
yw50.!

The bifurcation diagrams of the ODE system~6! show
that, as expected, the homogeneous solutions become
stable at Pe5Pe0 @Eq. ~9!# and increasing Pe leads to s
quences of period-doubling bifurcations that form spatia
oscillatory solutions of the same type as the related mi
reactor~see Fig. 1!.

Numerical simulations of systems~2! and ~3! in the
bounded domain (L̃510) revealed that there exists a stea
solution that is transformed with increasing Pe in a way t

FIG. 1. Bifurcation diagram of system~6! showing period-
doubling transitions.~a! f51, system convergence to chao
period-16 solution was obtained at Pe5780, and the sequence wa
not traced further;~b! varying f, af5100 ending with theP4

solution; aT59, Da150.26, Da250.13, B1557.77, andB25
224.61; computed byAUTO @18#.
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follows the bifurcation diagrams of the ODE system~6!. Be-
low Pe0 the homogeneous solution is established practic
in the whole domain with some adjustment in the inlet s
tion due to the boundary conditions (xi ,in ,yin were adjusted
to shorten this inlet effect!. Just above the critical values th
system exhibits stationary spatial period-one (P1) patterns
@Fig. 2~a!, row 1#. The regular single-loop structure is clear
seen in the ‘‘spatial’’ phase planes constructed by plott

x1(j) vs x2(j) profiles from the data in 0.25L̃,j<L̃ @Fig.
2~b!, row 1#. The difference between the ‘‘numerical’’ an
exact values ofk0 is about 0.1%. With increasing Pe nume
cal simulations reveal a sequence of period-doubling bif
cations@a period-four solution is shown for Pe5500, Figs.
2~a! and 2~b!, row 2#. The exact classification of patterns fo
high Pe is dubious due to the finite size of th

FIG. 3. Spatiotemporal patterns in the varyingf case:x1 is
plotted in ~a! using a gray scale;~b!,~c! fragments of thex1(j)
profile att5t1 ; aT59, af510, Pe51000, andKf55000.

FIG. 2. Bifurcation of spatial patterns in a bounded system
Pe545 ~row 1!, 500 ~row 2!, and 1000~row 3! showing the spatial
pattern@column ~a!, f51# and ‘‘spatial’’ phase planes withf51
@column~b!# or varyingf @af5100, column~c!#; ~other parameters
as in Fig. 1, Le5100).
4-3
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FIG. 4. The temporal profiles
of the concentrationx1 and its

spectrum atj50.25L̃ ~a! and j

50.5L̃ ~b!.
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system~for Pe5700 a period-eight pattern is expected with
periodT853.234, so that obviouslyL̃510 is not sufficiently
long for period recognition!. For this reason we cannot claim
that the patterns converge into a fully chaotic solution. Y
we note that stationary solutions become practically inse
tive to Pe for large Pe@Figs. 2~a! and 2~b!, row 3# and coin-
cide with corresponding solutions of the mixed system w
fixed initial conditions.

Numerical simulations were conducted by an impli
finite-difference scheme based on the method of fractio
steps with 40 000 spatial grid points.

B. The variable catalytic activity case

We repeat the steady state analysis presented abov
adding the algebraic relation

f5
af2y

bf
~10!

to system~6!. The critical parameters Pe0 ,k0 can be deter-
mined from Eq.~9! as well, using the gain differentiatin
rule for functions f ,g,h while accounting for Eq.~10!. To
simplify the following analysis we usedaf as a free param
eter and definedbf5af2ys in order to ensure that change
in af do not affect the steady state solution (x1s , x2s , ys,1!.
Obviously asaf→`, f→1. For very largeaf the bifurca-
tion diagrams preserve the same form as for the cons
activity case. With decreasingaf the number of period-
doubling transitions in the domain Pe0,Pe,` decreases
~Thus, for aT59.0 andaf51000 we still find a spatially
chaotic behavior, withaf5100 the sequence of bifurcation
converges toP4 solution @see Fig. 1~b!, and withaf510 a
period-one solution is stable for all Pe.Pe0#.

We start now to study the dynamics. For sufficiently hi
af and moderateKf the system is stable and its behavior
quite similar to the casef51 @see Fig. 2~c!#. The effect of
decreasingaf or increasingKf is to destabilize the system
by inducing a front motion as in a typical activator-inhibit
system.f is the slow variable and its response is more sl
gish asKf increases. Beyond a certain threshold, determ
tion of which is out of the scope of this paper, the syst
undergoes a transition to spatiotemporal motion; Fig. 3aT
59, af510; the analysis predicts a simple period-one so
01620
t
i-

al

by

nt

-
-

-

tion for Pe.Pe0574.8) presents a pattern composed of s
eral stationary waves near the inlet and a rather aperio
wave packet that moves upstream. The aperiodic natur
the spatial signal was verified from its power spectra~not
presented! showing several leading frequencies. With i
creasing Pe orKf the width of the stationary wave packe
diminishes while the moving packet broadens.

In the power spectrum of the temporal signal around
boundary between the stationary and moving waves~here at
j50.25L̃) we cannot distinguish any leading frequency@Fig.
4~a!#.

The solution becomes more regular with increasingj
@Figs. 4~b! and 4~c!#. With increasing Pe and/orKf the spec-
tral characteristics become more complicated. Similar res
were obtained for smalleraT , but the region where stabl
stationary patterns exist is shifted to a range of larger Pe
Kf values.

IV. CONCLUSIONS

Finally we comment about the interaction of the syste
length L̃ and the period of oscillationsT. We observed sta-
tionary period-one, period-two or period-four patterns, a
we can expect the emergence of more complicated struct
with increasingL̃. On the other hand the effect of the inle
boundary conditions cannot propagate for an infinitely lo
distance and this case requires further study.

To summarize our results, we presented a mechanism
the emergence of spatially chaotic or spatially multiperio
stationary patterns in a convection-diffusion-reaction syst
and demonstrated it on a system with two consecutive re
tions in a cross-flow reactor. The results apply to any sys
of the form of Eq.~1! when its ODE analog,xt5f, exhibits
temporally chaotic solutions. The interaction of this syste
with a slow, nondiffusing, and localized inhibitor may lead
spatiotemporal patterns.
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